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Explanations are key for building trust in autonomous systems such as autonomous vehicles
(AVs). We identify different types of explanations in challenging driving scenarios.
Moreover, we characterize several dimensions for explanations and identify different
stakeholders for which explanations are relevant. Furthermore, we develop methods and
provide guidance for generating explanations using vehicle perception and action data in
dynamic driving scenarios.

The need for explainability

Transparency and Accountability

One generally agreed upon notion of accountability is associated with the process of being
called ‘to account’ to some authority for one’s actions [1]. In the human and machine
context, accountability is conceptualised as the ability to determine whether the decision of
a system was made in compliance with procedural and substantive standards, and
importantly, to hold one responsible when there is a failure to meet the standards [2]. In
autonomous driving, accountability becomes a challenging issue mainly because of the
various operations involved (e.g. perception, localisation, planning, controls, system
management, among others) that demand inputs from multiple stakeholders; responsibility
gaps are not out of the common for such multifaceted processes.

Achieving accountability requires social interaction and exchange [3]. At one end, the
requester of an account seeks answers and rectification while at the other end, the
respondent or explainer responds and accepts responsibility if necessary. We expect
autonomous systems to be able to provide an account in the form of an explanation that is
intelligible to the requester to facilitate the assignment of responsibilities.

There have been debates on how responsibility should be allocated for certain AV accidents.
Companies have stated the need to put legal frameworks in place in order to clarify where
the responsibility lies in case of the occurrence of an accident after the realisation of fully
automated driving [4]. Technical solutions are also being put forward. One such example is
the proposal for the use of a ‘blackbox’, similar to a flight recorder in an aircraft, to facilitate
investigations [5]. Shashua and Shalev-Shwartz [6] also advocated for the use of
mathematical models to clarify faults in order to facilitate a conclusive determination of
responsibility. The social aspect of accountability described by Mulgan [3], will demand that
the aforementioned recommended approaches are able to plug into explanation
mechanisms where causes and effects of actions can be communicated to the relevant
stakeholders in intelligible ways.

Autonomous systems should be able to explain what they have ‘seen’ (perception), would
do (plan), and have done (actions) when demanded. This is critical in accounting for actions
that have resulted in undesired, discriminatory, and inequitable outcomes. This means that
stakeholders such as passengers or auxiliary drivers who may not have direct involvement in



the management of the AVs should be able to instantaneously request accounts as
intelligible explanations for such undesired actions when they occur.

Trust

Trust in the context of automation is considered as a social psychological concept that is
important for understanding automation partnership [7]. It is the attitude that an agent or
automation will help an individual to achieve their goals in a situation characterised by
uncertainty and vulnerability. Trust in automation has been proved to have significantly
influence in the acceptance of and reliance on automated systems [8] [9] [10]. Information
about the functioning modes of an autonomous system at the user’s disposal can help the
user create a better understanding of the systems’ behaviour, eventually adding to the
user’s knowledge base [11]. This process has been proved to be useful in calibrating trust.
This information in context could be presented as explanations of the operational modes
and behaviour of a complex system, such as an AV, especially when it acts outside the
expectations of the user.

Trust can break down when there are frequent failures without adequate explanations, and
regaining trust once lost can be challenging [12] [13]. For instance, previous reports on AV
accidents may have a negative impact on calibrated trust in AVs. According to Hussainet al.
[14], a serious challenge evident in intelligent transport systems is the lack of trust from the
consumer’s perspective. Trust is therefore imperative for achieving widespread deployment
and use of AVs. It has been argued that trust is a substantial subjective predicting factor for
the adoption of automated driving systems [9] [15] [16]. Trust formation and calibration in
AVs have also been considered as a temporal process influenced by prior information or
background knowledge [17] [18]. The provision of meaningful explanations to stakeholders
(e.g. passengers, pedestrians and other road participants) over time as shown in ([19] [20]
[21]]) is therefore an important way to build the necessary trust in AV technology.

Standards and regulations

Standards

Some of the standards provided in [22] are relevant to explainability in autonomous driving.
For example, ISO/TR 21707:2008 which specifies a set of standard terminology for defining
the quality of data being exchanged between data suppliers and data consumers in the ITS
domain is very relevant to AV explainability although not originally intended for
explainability. While the quality of data is important, the presentation style and language
and the interfaces by which the data is provided are also critical for explanations in
autonomous driving. We suggest that this standard and others (in [22]) be explored for the
development of more AV explainability related ones, and should be made easily accessible.

Regulations

Regulations regarding the explainability of automated systems are being set by countries
and regions. However, these regulations seem to be too general and do not directly specify
requirements for specific technologies and stakeholders, especially in autonomous driving.
Typical examples are the GDPR ‘right to explanation’ [23] and transparency act, and the UK’s
ethics, transparency and accountability framework for automated decision-making [24].

In the AV context, a preliminary consultation paper on autonomous vehicles [25], UK Law
Commission states the recommendation of the National Physical Laboratory on
explainability in autonomous driving:
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It is recommended that the autonomous decision-making systems should be available,
and able, to be interrogated post-incident. Similar to GDPR, decisions by automated
systems must be explainable and key data streams stored in the run-up, during and
after an accident.

While this is related to AVs, the paper failed to provide a more comprehensive guide on

requirements.

Explanations can help in assessing and rationalising the actions of an AV (outcome-based),
and in providing information on the governance of the AV across its design, deployment,
and management (processed-based). This is in line with the information commission office
(ICO) guidelines [26] for general Al systems. We suggest that more concrete regulatory
guidelines for AV explainability should be set in line with these two goals.

Aim

Standard and description

Stakeholder

Human
Safety

ISO 19237:2017 Pedestrian detection and collision mitigation
systems

ISO 22078:2020 Bicyclist detection and collision mitigation systems

ISO 26262:2011: Road vehicles — Functional safety. An
international standard for functional safety of electrical and/or
electronic (E/E) systems in production automobiles (2011). It
addresses possible hazards caused by the malfunctioning
behaviour of E/E safety-related systems, including the interaction
of these systems.

ISO 21448:2019: Safety Of The Intended Functionality (SOTIF).
Provides guidance on design, verification and validation measures.
Guidelines on data collection (e.g. time of day, vehicle speed,
weather conditions) (2019). (complementary to I1SO 26262).

UL 4600: Standard for Safety for Evaluation of Autonomous
Products. a safety case approach to ensuring autonomous product
safety in general, and self-driving cars in particular.

SaFAD: Safety First for Automated Driving. White paper by eleven
companies from the automotive industry and automated driving
sector about frameworks for development, testing and validation
of safe automated passenger vehicles (SAE Level 3/4).

RSS (Intel) / SFF (NVIDIA): Formal Models & Methods to evaluate
safety of AV on top of ISO 26262 and ISO 21448 (proposed by
companies).

IEEE Initiatives: “Reliable, Safe, Secure, and Time-Deterministic
Intelligent Systems

(2019)”; “A Vision for Prioritizing Human Well-being with
Autonomous and Intelligent Systems” (2019); “Assessment of
standardization gaps for safe autonomous driving (2019)”.

Class B and C

AV
Developers,

Regulators,

System
auditors,
Accident
investigators,
Insurers
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The Autonomous: Global safety reference, created by the
community leading automotive industry players, which facilitates
the adoption of autonomous mobility on a grand scale (2019).

Information/
data
exchange

ISO/TR 21707:2008: Integrated transport information,
management, and control— Data quality in intelligent transport
systems (ITS). “specifies a set of standard terminology for defining
the quality of data being exchanged between data suppliers and
data consumers in the ITS domain” (2018).

ISO 13111-1:2017: The use of personal ITS station to support ITS
service provision for travellers. “Defines the general information
and use cases of the applications based on the personal ITS station
to provide and maintain ITS services to travellers including drivers,
passengers, and pedestrians” (2017).

ISO 15075:2003: In-vehicle navigation systems—Communications
message set requirements. “Specifies message content and format
utilized by in-vehicle navigation systems” (2003).

ISO/TR 20545:2017: Vehicle/roadway warning and control systems.
“Provides the results of consideration on potential areas and items
of standardization for automated driving systems” (2017).

ISO 17361:2017: Lane departure warning.

ISO/DIS 23150: Data communication between sensors and data
fusion unit for automated driving functions.

Class Aand C
Passengers,
Auxiliary
Drivers,
Pedestrians,
Regulators,

System
auditors,

Accident
investigators

Insurers

Table I: selected standards for autonomous vehicles. These standards underline the importance of safe,

transparent, and explainable AVs.

Stakeholders

1. Class A: End-users

e Passenger: this is the in-vehicle agent who may interact with the explanation agency
in the AV but is not responsible for any driving operation.

e Auxiliary driver: This is a special in-vehicle passenger who may also interact with the
explanation agency in the AV and can also participate in the driving operations. This
kind of participant may mainly exist in SAE level 3 and 4 vehicles.

e Pedestrian: this is the agent outside the AV (external agent) who may interact with
the AV to convey intentions either through gestures or an external human-machine
interface (eHMI).

e Pedestrian with Reduced Mobility (PRM): this is the agent outside the AV (external
agent) who may interact with the AV to convey intentions either through gestures or
an external human-machine interface (eHMI) but have reduced mobility capacity
(e.g., pedestrian in a wheelchair).

e Other road participants: these are other agents outside the AV (external agent) who
may interact with the AV to convey intentions either through gestures or an external
human-machine interface (eHMI) (e.g. cyclists, other vehicles).
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2. Class B: Developers and technicians
e AV developer: the agent who develops the automation software and tools for AVs.
e Automobile technicians: the agent who repairs and maintains AVs.

3. Class C: Regulators and insurers

e System auditor: the agent who inspects AV design processes and operations in order
to ascertain compliance with regulations and guidelines.

e Regulator: the agent who sets guidelines and regulations for the design, use, and
maintenance of AVs.

e Accident investigator: the agent who investigates the cause of an accident in which
an AV was involved.

e Insurer: the agent who insures the AV against vandalism, damage, theft, and
accidents.

Explanation categorisations

We provide a categorisation of explanations based on the different methodologies
identified in the explanation literature for the design and development of explanations
techniques. Explanation techniques that are mainly based on the researcher’s experience
without further user studies to justify claims are categorised under unvalidated guidelines
(UG). Those that adopted a user study to elicit users experience are categorised as
empirically derived (ED), and those that built on psychology theories as are categorised
under psychological constructs from formal theories (PC). Other dimensions for the
categorisation include causal filter, explanation style, interactivity, dependence, system,
scope, stakeholders, and operation.

The description of the various dimensions of explanation is detailed in [22].

Explanation generation for AVs

Perception - vision-based explanations for AVs

Various methods have been proposed to explain neural networks which are fundamental
structures for perception and scene understanding in AVs. Some of the prominent methods
are gradient-based. Gradient-based or backpropagation methods are generally used for
explaining convolutional neural network models. The main logic of these methods is
dependent on gradients that are backpropagated from the output prediction layer of the
CNN back to the input layer [44]. They are often presented in form of heatmaps. These
methods mainly fall under the input influence explanation style in the explanation
categorisation presented in Table 4. Many of the vision-based explanations for AVs (e.g.
those from Table 3) stem from generic gradient-based methods explained above.

Perception - driving datasets for posthoc explanations

Several driving datasets have been made available for the purpose of training machine
learning models for autonomous vehicles (see [45]). Some of these datasets have
annotations—e.g. handcrafted explanations [27] [46], vehicle trajectories [47], human driver
behaviour [48] [35] or anomaly identification with bounding boxes [30] [46]— that are
helpful for posthoc driving behaviour explanation (See detail in [22].

Body of Knowledge 2.8 — automotive practical guidance
Copyright © 2022 University of York



References

Causal filter

Explanation style Interactivity Dependence System Scope T
<
§ o £
s g
s 3
50
T T
& £ | £ § 1% O I S g s | &
I I s & S E | § g ¢ 3 d | :
c Q < [ < £ < ¢ = QT e = C
< € = T & T o < & 8 g
3 5 c 2 N < <
S e |5 |°
§
=2
Kim et al. [27] UG+ ED B, C P, C
v v v vV
Chakraborti et al. UG B&C PL
(28] v v v vV v
Raman et al. [29] UG B&C PL
v v v vV v
Xu et al. [30] UG A&C P
v v v v
Kim & Canny [31] UG B&A P
v v v v VIRV,
v
Cultrera et al. [32] UG B&A P
v v v vV
v
Schneider et al. ED A&C P
(33) v v v vV
Rahimpour et al. 8]€] B&C P
[34] v v v vV
Shen et al. [35] ED B P
v v vV
v v
Ben-Younes et al. UG A&C P
(36] v v v v v
v
Nahata et al. [37] UG B PL
v vV v v v
v
Ha et al. [20] ED + PC A&B P
v v v v
Koo et al. [19] ED + PC A&B P
v v v
v
Bojarski et al. [38] UG B&C P
v v v vV
v
Mori et al. [39] UG B&C P
v v v vV
v
Liu et al. [40] ED A P
v v v v
v
Omeiza et al. [21] ED A P
VIiVvI]VvI]Vv v v

Body of Knowledge 2.8 — automotive practical guidance
Copyright © 2022 University of York




Rizzo et al. [41] UG B

Liu et al. [42] uG B&C

Omeiza et al. [43] ED A

v VEIRY v v
v

Table 2: Summary of explanations categories. The table includes a subset of the reviewed papers where each or
a subset of the explanation categories was mentioned in the context of autonomous embodied agents.

Stakeholders: Class A—Passenger (PA), Pedestrian (PE), Pedestrian with Reduced Mobility (PRM), Other Road
Participants (ORP), Auxiliary Driver (AD). Class B—Developer (DV), Auto-Mechanic (AM). Class C—System
Auditor (SA), Regulator (RG), Insurer (IN), Accident Investigator (Al).

Methods: Unvalidated Guidelines (UG), Empirically Derived (ED), Psychological Constructs from Formal Theories
(PC). Operations: Perception (P), Localisation (L), Planning (PL), Control (C), System Management (M)

Localisation

Precise and robust localisation is critical for AVs in complex environments and scenarios
[49]. For effective planning and decision making, the position and orientation information is
required to be precise in all weather and traffic conditions. Safety is often considered the
most important design requirement and it is critical in the derivation of requirements for
AVs [50]. Hence, communicating position over time and with justifications as explanations is
crucial to expose increasing error rates in a timely manner before they cause an accident.
For instance, the position errors can be transmitted continuously through a wireless channel
to an operation centre from which the AV is managed. An interface that displays this
information (e.g., a special dashboard or mobile application as shown in [33]) is provided
and it is able to trigger an alarm for immediate action (e.g. safe parking) when the error
margin is exceeded. There seems to be limited work on explainability in this area. However,
explanations would be helpful, especially for Class B stakeholders.

Planning

Through Al planning and scheduling, the sequence of actions required for an agent to
complete a task are generated. These action sequences are further utilised in influencing
the agent’s online decisions or behaviours with respect to the dynamics of the environment
it operates in [51]. Often, the amount of data (e.g. descriptions of objects, states, and
locations) that the AV processes per time is larger than such that a human may be able to
process, and continuously and accurately keep track of. Hence, a stakeholder riding in an AV
may be left in a confused state when the AV updates its trajectory without providing an
explanation. Explainable planning can play a vital role in supporting users and improving
their experiences when they interact with autonomous systems in complex decision-making
procedures [52]. Relevant work includes XAI-PLAN [53], WHY-PLAN [54], refinement-based
planning (RBP) [55], plan explicability and predictability [56], and plan explanation for model
reconciliation [28] [57].

Vehicle control

Control in an AV generally has to do with the manipulations of vehicle motions such as lane
changing, lane-keeping, and car following. These manipulations are broadly categorised
under longitudinal control (speed regulation with throttle and brake) and lateral control (i.e.
automatic steering to follow track reference) [58]. Interfaces that come with Advanced
Driving Assistance System (ADAS) now display rich digital maps [59], vehicle’s position, and
track related attributes ahead or around the vehicle. Stakeholders may issue investigatory
gueries when the AV makes a decision against their expectations. Other than existing in-
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vehicle visual interfaces such as mixed reality (MR) visualisation [60], and other flexible (i.e.
highly reconfigurable) dashboard panels [61], in-vehicle interfaces that support the
exchange of messages between the stakeholder and the AV are crucial. The user should be
able to query the interface and receive explanations for navigation and control decisions in
an appropriate form; either through voice, text, visual, gesture or a combination of any of
these options.
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Figure 1: Example from [21] using the trust objective. Frequency of negative (distrust) and positive (trust)
comments about trust in AVs. The y-axis indicates the frequency in percentage, while the x-axis indicates the
pre-AV and post-AV experiences along with trust and distrust comments. Only the Why Not group had
increased positive comments in the post-AV experience questionnaire. Why group received factual
explanations, Why Not group received contrastive explanations, What-If group received counterfactual
explanations, What group received a non-causal explanation (i.e. action description without the cause of the
action).

Evaluating explanations

There are generally quantitative and qualitative means for assessing explanations.
Quantitative approaches (e.g. correlating with existing supposed faithful explanation
approaches [62] [63], local fidelity [64], change in log-odds [65], data staining [66], use of
interpretable ground truths, and observing behaviour through input perturbation) are
usually used to assess faithfulness of an explanation to the actual system workings. While
qualitative approaches have mostly been applied in assessing the utility of explanations
using the intelligibility, plausibility, accountability, confidence, trust, knowledge
enhancement etc. objectives; they are usually carried out using user studies. In autonomous
systems, especially autonomous driving, the qualitative approaches have been mostly
adopted in assessing explanations (e.g. in [21] [43] [19] [20]).

Assessing accountability through explanations

Omeiza et. al [43] proposed a data representation approach to enhance accountability in
autonomous driving through explanations. Explanations were constructed to make
references to AV’s actions, observations in scenes, and road rules. A tree-based
(interpretable) approach was proposed to assess accountability along with a user study.
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Figure 2: Example from [21] using the knowledge enhancement objective. Task performance in the different
driving events. With the exception of the near-miss category, participants in the Why Not group consistently
outperformed other groups. Impact of explanation types was greatest in collision and emergency events.
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Figure 3: Assessing accountability through explanations. The figure illustrates the underlying tree-based
representation used in explanation generation. The tree is constructed with key variables: road rules (R),
observations (0O), and actions (A). Different types of explanations are generated through different traversals of
the tree. We manually interpreted the outcomes indicating accountability (especially in collision incidents) for
each path in the tree representation one of the left turn scenarios used in the user study.
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Figure 4: An instance of the Lyft Level5 dataset [47] that visualises a potential left-turn conflict. As before, the
ego is depicted in green and two other agents in yellow and orange. The yellow agent is in the direct view of
the ego vehicle and has a current high-risk value because the relative distance between them is small.
However, due to looming, we realise that these cars will never actually meet since the yellow agent will pass
the point before the ego vehicle arrives there, which is indicated by its decreasing risk. On the other hand, the
orange vehicle, poses a very high risk to the ego as it might actually reach the point of collision at the same
time as the ego, once the yellow vehicle has passed. Thus, this helps the ego to prioritize between different

agents, to focus on the riskier one (here the orange agent) and to manoeuvre accordingly.

Generating explanations

Algorithms have been proposed to generate explanations in visual forms (e.g. in [27]) and in
natural language forms (e.g. in [37]). In [37], an interpretable algorithm was proposed to
generate natural language explanations for collision risks models in autonomous driving.
Figure 4 provides an example of the type of scenarios where the risk models were applied.

Explanation 1 shows sample natural language explanations.

Decision-making

Deep learning models are being used to predict AVs’ trajectories or high-level plans. In fact,
some companies are implementing end-to-end deep learning models to handle core driving
operations (perception, localisation, and planning) at a go. These methods need explainer
models to generated explanations to relevant stakeholders. In [DO], a transparent algorithm
is developed to predict an ego vehicle’s actions and then generate intelligible explanations
for the prediction based on the ROADS dataset [67]. Figure 5 summarises the entire process,
from predicting to explaining.
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Activities description

We did an extensive literature review on explanations in the context of autonomous driving
[22], [D1], [D2] in which we have identified multiple types and dimensions of explanations
as well as the requirements for different stakeholders. We reported on causal explanations
(contrastive, non-contrastive, counterfactual) and non-causal explanations as well as how
explanations are useful for different stakeholders such as end-users, technicians and
engineers, regulators and insurers. In a user study we have evaluated different types of
explanations in safety critical scenarios [21] [43]. In [21], we investigated how different
types of explanations are perceived by humans in challenging driving scenarios (including
near-miss events and accidents). In [43], we tested and reported on the accountability of
explanations and evaluated to what extent explanations can help end-users to understand
traffic rules.
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Figure 5: From commentary driving, requirements for explanations are gathered to inform the design of an
explanation algorithm. The algorithm receives input data from the different autonomous driving operations,
provides a structured representation, and generates intelligible explanations to stakeholders.

In [37], we investigated how explanations can help to explain risk assessments in real-world
driving scenarios. We will report on explainable Al (XAl) techniques that allow us to explain
important factors when assessing collision risk with other road users (incl. vehicles,
pedestrians and cyclists).

Application of approach

We are in the process of developing methods for the (online) generation of explanations
(based on perception and action data) [DO] with the aim to integrate and demonstrate the
techniques on the Oxford RoboCar dataset as well as the SAX dataset [D3].
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